Year 2

COUNTING, PROPERTIES OF NUMBERS AND NUMBER SEQUENCES
zero, one, two, three... to twenty and beyond
zero, ten, twenty... one hundred
zero, one hundred, two hundred... one thousand
none many...?
count, count (up) to
count on (from, to
count on (from, to)
count in ones, twos, threes, fours, fives.
count in tens
more, less, many, few
tally
odd, even
odd, even
every other
how many times?
multiple of
sequence
continue
predict
pattern, pair, rule
PLACE VALUE AND ORDERING units,
digit
one-, two- or three-digit number
eens' number
stands for, represents
exchange
the same number as, as many as
Of two objects/amounts:
greater, more, larger, bigge
less, fewer, smaller
f three or more objects/amounts:
greatest, most, biggest, largest
one more, ten mor
one more, ten more
one less, ten less
first, second, third... tenth... twentieth
twenty-first, twenty-second. .
ast, last but one
before, after, next
between, half-way between
above, below
above, below
ESTIMATING
guess how many, estimate
bout the same as
just over, just unde
xact, exactly
ound, neare tew, enough, not enoug
MAKING DECISIONS AND REASONING
pattern, puzzle
calculate, calcu
mental calculation
jotting
right, correct, wrong
what could we try next?
how did you work it out? number sentence sign, operation, symbol

ADDITION AND SUBTRACTION - , add, addition, more, plus
make, sum, total
altogether
altogether
score
score
double, near double
one more, two more... ten more... one hundred more
how many more to make...?
how many more is... tha
how much more is...
how much more is....?

- subtract, subtraction, take (away
leave, how many are left/left over?
one less, two less... ten less... one hundred
how many fewer is... than...?
how much less is....
difference between
difference be
half, halve
$=$ equals, sign, is the same as
tens boundary
MULTIPLICATION AND DIVISION
lots of, groups of
x, times, multiply, multiplied by
once, twice, three times ... ten time times as (big, long, wide... and so on) repeated addition
array
row, column
double, halve
doube, halve
share, share equally
one each, two each, three each
group in pairs, th
$\stackrel{+}{\square}$, divide, divided by, divided into
left, left over
General
same, different
missing number/s
number facts
number pairs
number pairs
number bonds
number line, number track
number square, hundred square
number cards
number cards
number grid
abacus
counters, cubes, blocks, rods
die dice
die, dice
dominoes
pegs, peg board
geo-strips
same way, different way
best way, another way best way, another way
in order, in a different not
all, every, each

Year 2 Programme of Study

Pupils should be taught to
count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward
recognise the place value of each digit in a two-digit number
epresen
epresentations, including the number line

upils should be taught to

Number - addition and subtraction

solve problems with addition and subtraction:
using concrete objects and pictorial representations.
including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods
recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
add and subtract numbers using concrete objects, pictorial representations, and mentally, including:

Number - multiplication and division

Pupils should be taught to

recall and use multiplication and division facts for the 2,5 and
10 multiplication tables, including recognising odd and even
numbers
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division $(\dot{)}$ and equals $(=)$ signs
Number - fractions

Pupils should be taught to:
recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$
length, shape, set of objects or quantity

length, shape, set of objects or quantity
Pupils should be taught to: Measurement

Pupils should be taught to:
choose and use appropriate standard units to estimate and
measure length/height in any direction (m / cm); mass $(\mathrm{kg} / \mathrm{g})$) temperature ($\left.{ }^{\circ} \mathrm{C}\right)$; capacity ($(\mathrm{itres} / \mathrm{ml})$ to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and order lengths, mass, volume/capacity and record the results using >, < and =
recognise and use symbols for pounds ($£$) and pence (p);
combine amounts to make a particular value

- find different combinations of coins that equal the same

a two-digit number and ones

a two-digit number and tens
two two-digit number

- adding three one-digit numbers
show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing
show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
-solve problems involving multiplication and division, using arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

upils should be taught to

identify and describe the properties of 2-D shapes including the number of sides and line symmetry in a vertical line
identify and describe the properties of 3 -D shapes, including the number of edges, vertices and faces
amounts of money

- solve simple problems in a practical context involving addition and subtraction of money of the same unit induding diving change
mpare and sequence intervals of time
ell and write the time to five minutes, including quarter past to the hour and draw the hands on a clock face to show thes know the number of minutes in an hour and the number of hours in a day.

upils should be taught to:
 Geometry - position and direction

order and arrange combinations of mathematical objects in patterns and sequences
use mathematical vocabulary to describe position, direction
Statistic

- interpret and con
and simple tables
dentify 2-D shapes on the surface of 3-D shapes, [for example a circle on a cylinder and a triangle on a pyramid circle on a compare and sort common 2-D and 3-D shapes and everyday objects.
and movement, including movement in a straight line and anstinguishing between rotation as a turn and in terms of right anti-clockwise).

Addition to be taught alongside each other Subtraction

Children should use number lines that are marked out in jumps of one and ten and learn which would be most appropriate for a given calculation
Children will begin to use 'empty number lines' themselves starting with the larger number and counting on, keeping th first number whole.
Numicon and Base Ten should be used to support this. It is important that the visual image of these resources is related to the number line. Encourage children to use the language of partitioning and bridging when explaining their strategies.

Counting on
First counting on in tens and ones.' (jumping in 10 's). $34+23=57$

Then helping children to become more efficient by adding the ones in one jump (by using the known fact $4+3=7$).

Followed by adding the tens in one jump and the ones in one jump.

Bridging through ten can help children become more efficient. (target 10). $37+15=52$

$$
\text { Or } \begin{aligned}
& 52=37+\square \\
& 52=\square+37
\end{aligned}
$$

Compensation

Children should be taught when adding 9 , it is easier to add 10 then subtract 1 , modelling on a bead bar over jumping 10 .

$$
37+9=? ? 37+10=4747-1=46
$$

Complementary addition

Children should understand solving word problems, such as 'You need 10 marbles, but you only have 6, how many more do you
need?' Model on bead bar and number line... 'How to find the missing number'e.g. $10=6+$

Children
support.
calculations. They should begin to use empty number lines When subtracting, children should be taught to only partition the second number.

Counting back

Then helping children to become more efficient by subtracting the units in one jump (by using the known fact $7-3=4$).
$47-23=24$

$$
\begin{aligned}
& 47-\square=24 \\
& 24=47-\square
\end{aligned}
$$

Followed by subtracting the tens in one jump and the units in one jump.
$47-23=24$

Bridging through ten can help children become more efficient.
$42-25=17$

Counting on
It is important that children experience finding the difference between 2 numbers by counting on. The difference ITP is a good visual image.

The difference between 11 and 14 is 3 . $14-11=3$
$11+\square=14$

It is important that this is modelled using two bead strings, or two It is important that this is modelled using two bead strings, or two
Numicon plates as shown in the picture above. Children should Numicon plates as shown in the picture above. Chidren should
experience finding the difference in a range of contexts including height e.g. growth of two seedlings.

Compensation

When subtracting 9 , it is easier to subtract 10 then add 1 , (model on a bead bar).
37-9=? ? $\longrightarrow 37-10=27 \longrightarrow 27+1=28$

Multiplication
 to be taught alongside each othe

Division

Children will develop their understanding of multiplication and use jottings to support calculation:

Repeated addition
5 times $3=5 \times 3=5$ three times $=$ Three groups of $5=$

$$
5+5+5=15
$$

On a bead bar: $\quad 5 \times 3=5+5+5$
$-0000-1000-10000$
And on a number line: $\quad 5 \times 3=5+5+5$

Children should know that 3×5 has the same answer as 5×3. This can also be shown on the number line.

Arrays
Children should be able to model a multiplication calculation using an array. This knowledge will support with the development
of the grid method. Children will need to be taught the language of the gid' 'rolumns'
00000
$00005 \times 3=15$

$5 \times 2=10$
00000
$3 \times 5=15$

The multiplication ITP is a good visual image. They should explore arrays in the environment.
It is important to connect the array model to repeated addition using resources such as counters and show the link between more complex fractions of objects, numbers and quantities.

Scaling

Exploring concepts such as:
'This is twice as long as/ half as long as/
3 times as tall as'

Children will develop their understanding of division and use jottings to support calculation. They should make the link between counting in equal steps and grouping.
Sharing ' 6 sweets shared between 2 people, how many do they each get?'

Relate fractions to the sharing aspect of division through arrays and model the recording
E.g. $8 \div 2=$ half of 8 .

Grouping 'There are 6 sweets, how many people can have 2

sweets each?'
 ?

'Crisps come in packs of 5 , I have 20 children and each needs a packet. How many packs do I need to buy?' $20 \div 5=4$

Repeated Subtraction

$$
15 \div 5=15-5-5-5=
$$

(3 groups of 5)

$=O O O O-O O O O=O O O O$

Children should be encouraged to use their known multiplication facts to work out division calculations.
The bead bar will help children with interpreting calculations like $12 \div 3=$ as 'How many 3 's equal 12 ?
Solve calculations using symbols to stand for unknown numbers and complete equations using inverse operations.

$\div 2=4 \quad 20 \div \triangle=4 \quad \square \div \triangle=4$

Scaling

sam ran 6 km on Saturday.
How far did he run on Sunday?

